Dynamics of jamming avoidance in echolocating bats.

نویسندگان

  • Nachum Ulanovsky
  • M Brock Fenton
  • Asaf Tsoar
  • Carmi Korine
چکیده

Animals using active sensing systems such as echolocation or electrolocation may experience interference from the signals of neighbouring conspecifics, which can be offset by a jamming avoidance response (JAR). Here, we report JAR in one echolocating bat (Tadarida teniotis: Molossidae) but not in another (Taphozous perforatus: Emballonuridae) when both flew and foraged with conspecifics. In T. teniotis, JAR consisted of shifts in the dominant frequencies of echolocation calls, enhancing differences among individuals. Larger spectral overlap of signals elicited stronger JAR. Tadarida teniotis showed two types of JAR: (i) for distant conspecifics: a symmetric JAR, with lower- and higher-frequency bats shifting their frequencies downwards and upwards, respectively, on average by the same amount; and (ii) for closer conspecifics: an asymmetric JAR, with only the upper-frequency bat shifting its frequency upwards. In comparison, 'wave-type' weakly electric fishes also shift frequencies of discharges in a JAR, but unlike T. teniotis, the shifts are either symmetric in some species or asymmetric in others. We hypothesize that symmetric JAR in T. teniotis serves to avoid jamming and improve echolocation, whereas asymmetric JAR may aid communication by helping to identify and locate conspecifics, thus minimizing chances of mid-air collisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid jamming avoidance in biosonar.

The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust the...

متن کامل

On-board recordings reveal no jamming avoidance in wild bats.

Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar fre...

متن کامل

Echolocating bats rely on audiovocal feedback to adapt sonar signal design.

Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vo...

متن کامل

Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.

Although it has been recognized that echolocating bats may experience jamming from the signals of conspecifics, research on this problem has focused exclusively on time-frequency adjustments in the emitted signals to minimize interference. Here, we report a surprising new strategy used by bats to avoid interference, namely silence. In a quantitative study of flight and vocal behavior of the big...

متن کامل

Jamming avoidance response of big brown bats in target detection.

When searching for prey, big brown bats (Eptesicus fuscus) enhance the range of their sonar by concentrating more energy in the nearly constant-frequency (CF) tail portion of their frequency-modulated (FM) sweeps. We hypothesize that this portion of their signals may be vulnerable to interference from conspecifics using the same frequencies in their own emissions. To determine how bats modify t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 271 1547  شماره 

صفحات  -

تاریخ انتشار 2004